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ABSTRACT

Coupled non-negative matrix factorization (CNMF) is intro-
duced for hyperspectral and multispectral data fusion. The
CNMF fused data have little spectral distortion while enhanc-
ing spatial resolution of all hyperspectral band images owing
to its unmixing based algorithm. CNMF is applied to the syn-
thetic dataset generated from real airborne hyperspectral data
taken over pasture area. The spectral quality of fused data is
evaluated by the classification accuracy of pasture types. The
experiment result shows that CNMF enables accurate identi-
fication and classification of observed materials at fine spatial
resolution.

Index Terms— Non-negative matrix factorization, un-
mixing, data fusion, pasture classification

1. INTRODUCTION

The spatial resolution of hyperspectral sensors is often lower
than that of multispectral sensors. The hyperspectral and mul-
tispectral mission named HISUI (Hyperspectral Imager Suite)
is the Japanese next-generation spaceborne radiometer [1].
HISUI is composed of a hyperspectral radiometer with 30 m
ground sampling distance (GSD) and 186 spectral channels
over 400-2500 nm, and a multispectral radiometer with 5 m
GSD and 4 spectral channels over 450-900 nm. Data fusion of
hyperspectral and multispectral data has a possibility of pro-
ducing fused data with both higher spatial and spectral res-
olutions, which contribute to the accurate identification and
classification of observed materials at fine spatial resolution.

In low-spatial-resolution hyperspectral data, an observed
spectrum at each pixel is a mixture of several endmember
spectra, and is commonly called as “mixel” (mixed pixel).
Unmixing is a technique to decompose the observed spectrum
into endmember spectra and their abundance fractions. In the
recent decade, non-negative matrix factorization (NMF) [2],
[3], has become one of the most useful hyperspectral unmix-
ing techniques based on a linear spectral mixture model [4]-
[6]. Given a non-negative matrixV, NMF looks for two non-
negative matrix factorsW andH such thatV = WH . When
NMF is applied to hyperspectral unmixing,V, W, andH cor-
respond to observed data, endmember spectra, and abundance

fractions, respectively.

We proposed coupled non-negative matrix factorization
(CNMF) for the fusion of spectroradiometer datasets [7].
In the case of hyperspectral and multispectral data fusion,
CNMF unmixes the low-spatial-resolution hyperspectral data
and the high-spatial-resolution multispectral data alternately
using the relation between sensor properties for the NMF
initializations. By combining the hyperspectral endmem-
ber matrix and the high-spatial-resolution abundance matrix,
high-spatial-resolution hyperspectral data that inherit both
advantages of the two data can be synthesized. The CNMF
method is physically straightforward and easy to implement,
owing to its simple update rules. Since CNMF is based on
spectral unmixing, the CNMF fused data have little spectral
distortion while enhancing spatial resolution of all hyperspec-
tral band images.

In this work, we introduce the CNMF algorithm for hy-
perspectral and multispectral data fusion and investigate the
utility of the fused data for pasture classification. CNMF is
applied to the synthetic dataset generated from real airborne
hyperspectral data taken over pasture area. After numerical
evaluation of the spatial and spectral qualities of the fused
data, its utility for pasture classification is demonstrated.

2. COUPLED NON-NEGATIVE MATRIX
FACTORIZATION (CNMF)

The aim of hyperspectral and multispectral data fusion
is to estimate unobservable high-spatial-resolution hyper-
spectral data (Z ∈ Rλh×Lm) from observable low-spatial-
resolution hyperspectral (X ∈ Rλh×Lh ) and multispectral
(Y ∈ Rλm×Lm) data, which are spatially co-registered. Here,
λh andλm denote the numbers of spectral channels of hyper-
spectral and multispectral sensors, respectively.Lh andLm

denote the numbers of pixels of hyperspectral and multispec-
tral data, respectively.λh > λm andLh < Lm are satisfied
due to the trade-off between spatial and spectral resolutions
of two sensors.



2.1. Observation Model

The relation between the low- and high-spatial-resolution hy-
perspectral data can be expressed in matrix form by

X = ZS+ Ns, (1)

whereS∈ RLm×Lh is the spatial transform matrix with each
column vector{sk}Lh

k=1 representing the transform from the
point spread function of the high-spatial-resolution hyper-
spectral data to that ofk th pixel value in the low-spatial-
resolution hyperspectral data.Ns is the residual error. Sim-
ilarly, the multispectral data is related to the high-spatial-
resolution hyperspectral data by

Y = RZ + Nr, (2)

whereR ∈ Rλm×λh is the spectral transform matrix with
each row vector{r i}λm

i=1 representing the transform from the
spectral response function of the hyperspectral data to thei th
band in the multispectral data.Nr denotes the residual error.
In the simulation of this work with synthetic data,SandR are
given.

When applied to real data,S is determined by image regis-
trations and estimation of point spread functions andR is de-
rived from radiometric calibration to obtain spectral response
functions.

2.2. Coupled NMF Unmixing

With the linear spectral mixture assumption,X andY are ex-
pressed as follows:

X = WhHh + Eh, (3)

Y = WmHm + Em. (4)

Here,Wh ∈ Rλh×D, Hh ∈ RD×Lh , andEh ∈ Rλh×Lh are
the endmember, abundance, and residual matrices of the low-
spatial-resolution hyperspectral data, respectively.Wm ∈
Rλm×D, Hm ∈ RD×Lm , andEm ∈ Rλm×Lm are those of
the multispectral data. NMF spectral unmixing is commonly
performed to minimize the squared Frobenius norm of the
residual matrix in the linear spectral mixture model expressed
as∥Eh∥2F and∥Em∥2F for (3) and (4), respectively. Lee and
Seung proposed a multiplicative update rule (MUR) that is
guaranteed to converge to a locally optima under the non-
negativity constraints of factorized two matrices. We used
MUR for NMF unmixings ofX andY. It is physically reason-
able to assume that the high-spatial-resolution hyperspectral
data contains the same endmember spectra as the low-spatial-
resolution hyperspectral data and the same abundance maps
as the multispectral data. Therefore,Z can be approximated
as

Z ≈ WhHm. (5)

This is the key idea of CNMF data fusion. From (1)-(4) and
(5), the endmember and abundance matrices are related as

Hh ≈ HmS, (6)

Wm ≈ RWh. (7)

CNMF alternately unmixesX andY to estimateWh andHm

under constraints of (6) and (7).
The CNMF algorithm starts from NMF ofX to use its

spectral advantage. As the initialization phase, with the num-
ber of endmembersD set to a certain value,Wh is initial-
ized by vertex component analysis (VCA), which is one of the
most advanced geometry based endmember extraction meth-
ods with pure pixel assumption.Hh is set to a constant value
1/D and updated by MUR withWh fixed. As the optimiza-
tion phase,Wh andHh are updated by MUR until conver-
gence. In the subsequent rounds, only the initialization phase
is different, i.e., the value ofHh that is initialized by (6) is
used andWh is updated by MUR withHh fixed to inherit the
reliable abundance information obtained from NMF ofY.

The alternate step of CNMF is NMF ofY. As the initial-
ization phase,Wm is initialized by (7).Hm is set to a constant
value1/D and updated by MUR withWm fixed to inherit the
reliable endmember spectra obtained from NMF ofX. As the
optimization phase,Wm andHm are updated by MUR until
convergence.

We refer to the alternate NMF unmixings as the outer
loops and the update processes in each NMF nimxing as the
inner loops. As a convergence condition, we use the condition
that the change ratio of cost function achieves a value below a
given threshold. Considering practical use, a maximum num-
ber of iterations is set for each loop. Two parameters are set
for the outer and inner loops, respectively, as different values.

3. EXPERIMENT

3.1. Dataset

CNMF is applied to the synthetic dataset generated from com-
pact airborne spectrographic imager 3 (CASI-3) data taken
over pasture area in Hokkaido, Japan, on June 19, 2009. The
original data have 34 spectral channels over 410-1070 nm
with 1 m GSD. The data, originally measured as radiance,
was converted into reflectance. By down-sampling the orig-
inal high-spatial-resolution hyperspectral data in the spectral
and spatial domains, we generate the synthetic dataset sim-
ulating the characteristics of HISUI except for spectral reso-
lution of hyperspectral sensor. We ideally assume rectangle
functions for the point spread and spectral response functions
of two sensors. The multispectral data are produced by av-
eraging 5×5 pixel blocks of the original data with uniform
spectral response functions corresponding to the multispec-
tral bands 1-4 of the HISUI, which cover the 450-520, 520-
600, 630-690, and 760-900 nm regions, respectively. The
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Fig. 1. (a) RGB color image of test area with ground truth
classification samples plotted and (b) spectra of five plants.

Table 1. SAD (deg) between five plants.
OG RCG KB SVG ER

OG 0 2.688 1.008 2.892 2.324
RCG 0 3.266 5.518 0.906
KB 0 2.516 2.956

SVG 0 5.088
RE 0

low-spatial-resolution hyperspectral data are generated by av-
eraging 30×30 pixel blocks of the original data. In the same
way, we made the hyperspectral data with 5 m GSD as the
reference data that we aim to produce by CNMF.

3.2. Evaluation of fused data

The qualities of the CNMF fused data are evaluated by com-
paring it with the reference data. Peak-signal-to-noise ratio
(PSNR) is used to evaluate the spatial reconstructivity of each
band image. Higher PSNR indicates better spatial reconstruc-
tivity. Brovey transform, which is one of the most popular
pan-sharpen algorithms, is used as the comparison method.
This method is applicable only for spectral regions covered
by the multispectral sensor. For each pixel spectrum, spectral
angle distance (SAD) is used to evaluate the spectral distor-
tion. Smaller SAD indicates less spectral distortion.

3.3. Classification

The utility of the CNMF fused data for classification is eval-
uated by pasture classification. Observed pasture is mainly
composed of five plants such as orchard grass (OG), reed ca-
nary grass (RCG), Kentucky bluegrass (KB), sweet vernal
grass (SVG), and Elytrigia repens (ER). Ground truth data,
i.e., class labels and spectra, were obtained at 45 quadrate
areas with 3×3 m size. Analytical Spectral Device (ASD)
FieldSpec Pro spectroradiometer was used for field spectrum
measurement. Fig. 1 shows the RGB color image of the test
area with ground truth classification samples superposed and
the spectra of the five plants. SAD between these spectra are
summarized in Table 1. Pairs of OG and KB, and RCG and
ER are spectrally similar with about one degree of SAD. Since
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Fig. 2. (a) Endmember spectra and continuum removed spec-
tra in (b) 545-760 nm and (c) 900-1035 nm.

the CASI data have a geometrical error of about 2 m, the clas-
sification result is considered as correct if the major plant in
a 3×3 pixel square with its center set within 2 m of the sam-
pling point matches the ground truth data. We use the spec-
tral angle mapper (SAM) as a classifier. Especially for the
hyperspectral data, the continuum removal method with the
545-760 nm and 900-1035 nm regions is adopted [8]. Classi-
fication accuracy of the CNMF fused data is compared with
those of the hyperspectral, multispectral, and reference data.

4. RESULTS AND DISCUSSION

Left images of Fig. 2 show RGB image of the CNMF fused
data with those of the reference, hyperspectral, and multispec-
tral data. Right graphs show the comparison of spectra at two
points. The CNMF fused data is close to the reference data
both in terms of spatial and spectral domains. Fig. 3 (a) shows
the PSNR of the fused data obtained by CNMF and Brovey.
CNMF outperforms Brovey in all spectral bands owing to its
unmixing based optimization algorithm. In the spectral bands
not covered by multispectral data, the PSNR values of the
CNMF fused data are relatively low. This indicates that reso-
lution enhancement is limited without high-spatial-resolution
information. Fig. 3 (b) and (c) show the histogram of SAD
and the SAD distribution map, respectively. In a lot of veg-
etation areas, SAD is around one degree, which is compa-
rable with the minimum SAD between five plants. Streams
and trails show larger SAD. Since there are no pure pixels of
these objects in the low-spatial-resolution hyperspectral data,
it is difficult to retrieve their endmember spectra by NMF un-
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Fig. 3. (a) PSNR, (b) histogram of SAD, and (c) SAD distri-
bution map.

mixing. Spectra of water and soil can not be expressed as
linear combinations of vegetation spectra, which results in
larger SAD. To produce fused data with little spectral distor-
tion, endmember extraction is the most important process.

Fig. 4 shows the classification result of the observed area
and Table 2 shows classification accuracies for four data, i.e.,
the hyperspectral, multispectral, CNMF, and reference data.
Low classification accuracies of the hyperspectral and mul-
tispectral data suggest that both spatial and spectral resolu-
tions have significant effects on accurate classification. The
CNMF fused data shows comparable classification accuracy
with the reference data, outperforming the hyperspectral and
multispectral data. This indicates that the CNMF method has
a potential to produce high-spatial-resolution hyperspectral
data with little spectral distortion that enable accurate identi-
fication and classification of observed materials at fine spatial
resolution.

5. CONCLUSION

In this work, we introduced CNMF for hyperspectral and mul-
tispectral data fusion and demonstrated its utility for accurate
classification. Two data with trade-off between spatial and
spectral resolutions are reshaped as matrices and unmixed
into endmember and abundance matrices by NMF. By mul-
tiplying the endmember matrix derived from hyperspectral
data unmixing and the high-spatial-resolution abundance ma-
trix derived from multispectral data unmixing, high-spatial-
resolution hyperspectral data can be obtained. CNMF is ap-
plied to the synthetic dataset generated from CASI data taken
over pasture areas. Classification experiment of pasture types
proved that CNMF fused data enable accurate identification
and classification of observed materials at fine spatial reso-
lution. This technique is useful for the generation of higher-
order data products in the HISUI dataset.

(a) (b)

(c) (d)

OG RCG KB SVG ER

Fig. 4. Classification of pasture types generated from four
data, i.e., the (a) hyperspectral, (b) multispectral, (c) CNMF,
and (d) reference data.

Table 2. Classification accuracies (%) for four data.
Hyperspectral Multispectral CNMF Reference

46.7 51.1 64.4 66.7
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