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Abstract—Coupled nonnegative matrix factorization (CNMF)
unmixing is proposed for the fusion of low-spatial-resolution hy-
perspectral and high-spatial-resolution multispectral data to pro-
duce fused data with high spatial and spectral resolutions. Both
hyperspectral and multispectral data are alternately unmixed into
endmember and abundance matrices by the CNMF algorithm
based on a linear spectral mixture model. Sensor observation mod-
els that relate the two data are built into the initialization matrix
of each NMF unmixing procedure. This algorithm is physically
straightforward and easy to implement owing to its simple update
rules. Simulations with various image data sets demonstrate that
the CNMF algorithm can produce high-quality fused data both in
terms of spatial and spectral domains, which contributes to the
accurate identification and classification of materials observed at
a high spatial resolution.

Index Terms—Data fusion, nonnegative matrix factorization,
unmixing.

I. INTRODUCTION

HYPERSPECTRAL imaging sensors collect about 200
spectral band images in the visible and infrared wave-

length regions (400–2500 nm). Owing to its high spectral res-
olution, hyperspectral data are useful for the accurate detection
and identification of minerals, vegetation, and man-made ma-
terials. The spatial resolution of hyperspectral sensors is often
lower than that of multispectral sensors with a low spectral
resolution. The fusion of hyperspectral and multispectral data
has a possibility to produce fused data with high spatial and
spectral resolutions, which contributes to the accurate identifi-
cation and classification of an area observed at a fine spatial
resolution.

There are multiple studies on sharpening algorithms for
multispectral data [1]–[10]. Many of these algorithms are de-
signed to fuse multispectral data with a high-spatial-resolution
panchromatic image, commonly called pan sharpening. In
2006, the data fusion committee of the IEEE Geoscience and
Remote Sensing Society held a public competition for pan
sharpening algorithms [9]. The multiresolution methods based
on an undecimated discrete wavelet transform or Laplacian
pyramid [6] showed the best results. Since the enhancement of
the spatial resolution was often limited to the first component,
the intensity component, or the low-pass component, a certain
amount of spectral distortion occurred [9], [10].
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The first algorithm proposed for hyperspectral and multi-
spectral data fusion was a wavelet-based technique that in-
herited the pan sharpening algorithm [11], [12]. However, its
performance highly depended on the spectral resampling
method, which caused difficulty in enhancing the spatial resolu-
tions of all hyperspectral band images. A maximum a posteriori
(MAP) estimation method was developed to enhance the spatial
resolution of hyperspectral data using higher spatial resolution
data from an auxiliary sensor [13]–[16]. This approach used a
stochastic mixing model (SMM), which estimates the under-
lying spectral scene characteristics, to develop a cost function
that optimizes the estimated hyperspectral data relative to the
observed hyperspectral and multispectral data. In the actual
implementation, low-spatial-resolution hyperspectral data were
processed after principal component (PC) transform [16]. The
MAP/SMM method showed a better performance than those
based on least-squares estimation [1], [7] and PC substitution
[3]. Although the MAP/SMM method with wavelet transforms
demonstrated a high noise resistance [17], the experiments were
limited to enhancing the low-spatial-resolution hyperspectral
band images only in the multispectral wavelength regions.

Another approach for hyperspectral resolution enhancement
uses spectral mixture analysis [18], [19]. In this approach,
low-spatial-resolution hyperspectral data are unmixed into the
endmember spectra and abundances. Next, the abundance maps
are fused with high-spatial-resolution panchromatic data using
constrained optimization techniques. The results are limited to
the synthetic data where the endmembers are known a priori.
Although this approach did not focus on the estimation of
high-spatial-resolution hyperspectral data, the idea of using
unmixing for data fusion is physically reasonable and effective
for hyperspectral and multispectral data fusion.

In recent decades, many hyperspectral unmixing techniques
based on a linear spectral mixture model have been developed
[20]–[30]. Unmixing mainly consists of two steps: extracting
endmember spectra and calculating their abundance maps.
Convex-geometry-based approaches, which assume the pres-
ence of at least one pure pixel for each endmember, are com-
monly used for endmember extraction [24]–[26]. Over the last
decade, nonnegative matrix factorization (NMF) [31], [32] has
emerged as a useful unmixing method [27]–[30]. Factorizing
a nonnegative hyperspectral data matrix into two nonnegative
matrices, this method can identify the endmember spectra
and can estimate the corresponding abundances simultaneously
without pure pixel assumption.

In this paper, we propose a coupled NMF (CNMF) algo-
rithm for hyperspectral and multispectral data fusion based on
unsupervised unmixing. Low-spatial-resolution hyperspectral
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and high-spatial-resolution multispectral data are alternately
unmixed by NMF, taking into account sensor observation mod-
els. By combining the hyperspectral endmember matrix and the
high-spatial-resolution abundance matrix obtained from mul-
tispectral data, high-spatial-resolution hyperspectral data can
be generated. Both spatial and spectral reconstruction qualities
are evaluated by three simulations using synthetic data sets
generated from real airborne hyperspectral data. Comparison
results with the MAP/SMM method are also demonstrated.
CNMF is applicable to a visible-near-infrared radiometer data
set of hyperspectral imager suite (HISUI) [33], which is the
Japanese next-generation spaceborne radiometer composed of a
hyperspectral radiometer with 30-m ground sampling distance
(GSD) and a multispectral radiometer with 5-m GSD. HISUI
will provide both hyperspectral and multispectral data obtained
over the same region with identical atmospheric and illumina-
tion conditions.

This paper is organized as follows. Section II describes the
CNMF algorithm for the hyperspectral and multispectral data
fusion. Section III presents the characteristics of the simulation
data sets and the quantitative criteria for evaluating the perfor-
mance of the fused data. Experimental results and discussion
are presented in Section IV, and the conclusion is given in
Section V.

II. CNMF UNMIXING FOR DATA FUSION

The aim of hyperspectral and multispectral data fusion is
to estimate unobservable high-spatial-resolution hyperspectral
data (Z ∈ R

λh×Lm) from observable low-spatial-resolution
hyperspectral data (X ∈ R

λh×Lh) and high-spatial-resolution
multispectral data (Y ∈ R

λm×Lm). λh and λm denote the
number of spectral channels of hyperspectral and multispectral
sensors, respectively. Lh and Lm denote the number of pixels
of hyperspectral and multispectral images, respectively. All
data are expressed in a matrix form, with each column vector
representing a spectrum at each pixel. λh > λm and Lh <
Lm are satisfied by the tradeoff between spectral and spatial
resolutions of two sensors. We assume that the observed two
data are obtained under the same atmospheric and illumination
conditions and are geometrically coregistered with radiometric
correction.

A. Sensor Observation Model

The spatial domain of the low-spatial-resolution hyperspec-
tral data is degraded from that of the multispectral data. On the
other hand, the multispectral data is a spectrally degraded form
of the high-spatial-resolution hyperspectral data. Therefore, X
and Y are modeled as

X =ZS+Es (1)

Y =RZ+Er. (2)

Here, S ∈ R
Lm×Lh is the spatial spread transform matrix,

with each column vector {sk′}Lh

k′=1 ∈ R
Lm representing the

transform of the point spread function (PSF) from the mul-
tispectral image to the hyperspectral k′th pixel value. Each

PSF is assumed to be normalized, i.e.,
∑Lm

k=1 skk′ = 1. R ∈
R

λm×λh is the spectral response transform matrix, with each
row vector {ri}λm

i=1 ∈ R
λh representing the transform of the

spectral response function from the hyperspectral sensor to the
multispectral ith band detector. S and R are sparse matrices
composed of nonnegative components. Es and Er are the
residuals. In the simulation of this paper, S and R are given.

When applied to real data, S is determined by the image reg-
istration and estimation of the PSF. R is derived by radiometric
calibration to obtain spectral response functions.

B. Linear Spectral Mixture Model

A linear spectral mixture model is commonly used for un-
mixing problems owing to its physical effectiveness and math-
ematical simplicity. A spectrum at each pixel is assumed to be
a linear combination of several endmember spectra. Therefore,
Z is formulated as

Z = WH+N (3)

where W ∈ R
λh×D is the spectral signature matrix, with each

column vector {wj}Dj=1 ∈ R
λh representing the endmember

spectrum and D being the number of endmembers. H ∈
R

D×Lm is the abundance matrix, with each column vector
{hk}Lm

k=1 ∈ R
D denoting the abundance fractions of all end-

members at the pixel, and N ∈ R
λh×Lm is the residual. The

endmember spectra and abundances are nonnegative: W ≥ 0
and H ≥ 0. In addition, the sum of the abundances for each
pixel can be assumed to be unity, i.e.,

∑D
j=1 hjk = 1(k =

1, 2, . . . , Lm). When we deal with radiance data, the spectral
signatures vary in amplitude owing to the illumination effect
caused by the surface topography, buildings, and vegetation.
Therefore, with the abundance sum-to-one constraint, the end-
member matrix contains several shading endmembers.

By substituting (3) into (1) and (2), X and Y can be approx-
imated as

X ≈ WHh (4)

Y ≈ WmH. (5)

Here, we define the spatially degraded abundance matrix Hh ∈
R

D×Lh and the spectrally degraded endmember matrix Wm ∈
R

λm×D given by

Hh ≈HS (6)

Wm ≈RW. (7)

Equations (4) and (5) appear as the approximated forms of
the linear spectral mixture models degraded in the spatial and
spectral domains, respectively. Since the sum of abundances at
each pixel in H is unity and the PSF in S is normalized, the sum
of abundances at each pixel in Hh is also unity. In addition,
owing to the nonnegative characteristics of S, R, W, and H,
all components of Hh and Wm are also nonnegative. When S
and R are accurately obtained, the approximations of (6) and
(7) become exact.
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Fig. 1. Illustration of CNMF unmixing for hyperspectral and multispectral
data fusion.

C. CNMF Unmixing

Hyperspectral and multispectral data fusion based on unmix-
ing is achieved by the estimation of the high-spectral-resolution
endmember spectra and the high-spatial-resolution abundance
maps from the two data. The CNMF alternately unmixes X and
Y by NMF to estimate W and H, with the constraints (6) and
(7) used for the initialization steps. Fig. 1 shows the simplified
illustration of the CNMF. Other unmixing and endmember
detection algorithms are also applicable to these two unmixing
procedures. However, in order to minimize the residual errors
in the linear spectral mixture models while considering sensor
properties, NMF is straightforward to formulate and easy to
implement.

NMF attempts to decompose a nonnegative data matrix into
a product of nonnegative matrices [31], [32]. In the case of
applying it to a hyperspectral unmixing problem, a squared
Frobenius norm of a residual matrix in a linear spectral mix-
ture model is commonly used for a cost function. For the
NMF unmixings of X and Y, these cost functions are defined
by ‖X−WHh‖2F and ‖Y −WmH‖2F , respectively, where
‖ · ‖F denotes the Frobenius norm. Some researchers showed
that additional physical constraints to the cost function as
penalty terms were effective for hyperspectral unmixing [27]–
[31]. However, since the additional penalty functions did not
markedly affect the data fusion performance in our experiment,
we adopt the simple cost function. To minimize it, Lee and
Seung developed multiplicative update rules that are guaranteed
to converge to local optima under the nonnegativity constraints
of two factorized matrices [31], [32]. We use the multiplicative
update rules for the NMF unmixings of X and Y, which are
given as

W ←W. ∗
(
XHT

h

)
./
(
WHhH

T
h

)
(8)

Hh ←Hh. ∗ (WTX)./(WTWHh) (9)

Wm ←Wm. ∗ (YHT )./(WmHHT ) (10)

H ←H. ∗
(
WT

mY
)
./
(
WT

mWmH
)

(11)

where (·)T denotes the transposition of the matrix and .∗ and
./ denote elementwise multiplication and division, respectively.
To satisfy the abundance sum-to-one constraint, we adopted a
method given in [35].

The CNMF algorithm starts from NMF unmixing for the
low-spatial-resolution hyperspectral data owing to its spectral
advantage. As the initialization phase, we set the number of
endmembers D and calculate the initial endmember matrix W
by vertex component analysis (VCA) [26], which is one of the
most advanced convex-geometry-based endmember extraction
methods with the pure pixel assumption. Hh is set as the
constant value 1/D and is updated by (9) until convergence
with W is fixed. As the optimization phase, both W and Hh are
alternately updated by (8) and (9) until the next convergence.
The subsequent round of NMF unmixing for X differs from
the first round described previously only by the initialization
phase. Hh is initialized by (6), and W is updated by (8) until
convergence with Hh is fixed to inherit the reliable information
of abundance maps obtained from multispectral data.

As an alternate step, we apply NMF unmixing to the high-
spatial-resolution multispectral data. As the initialization phase,
Wm is set by (7). H is initialized as the constant value 1/D
and is updated by (11) until convergence with Wm is fixed.
This process is important in inheriting the reliable information
of endmember spectra obtained from hyperspectral data. As the
optimization phase, both Wm and H are alternately updated by
(10) and (11) until the next convergence.

The two NMF unmixing steps are repeated alternately until
convergence. The CNMF alternately takes advantages of the
spectral information of the low-spatial-resolution hyperspectral
data and the spatial information of the multispectral data to
find an initialization that results in better local optima. Finally,
we can produce the high-spatial-resolution hyperspectral data
by multiplying W with H. We refer to the alternate NMF
unmixings as the outer loop and the iterative update in each
NMF as the inner loop. As a convergence condition, we use the
condition that the change ratio of cost function C achieves a
value below a given threshold ε

∣∣∣∣C
l − Cl+1

Cl

∣∣∣∣ ≤ ε (12)

where l is an index of iteration. For a practical utility, the
condition that the number of iterations exceeds a predefined
maximum number of iterations is added to the stopping criteria
together with the convergence condition. The maximum num-
ber of iterations is set as different values between the inner and
outer loops, referred to as Iin and Iout, respectively.
Iin is a parameter that determines the constraint strength for

the sensor properties given by (6) and (7). When we set Iin
as one and Iout as a large value and when there is no update
in the initialization phase after the first NMF unmixings for
the two data, the subsequent optimization procedures can be
simplified as the iterations of (6), (9), (8), (7), (10), and (11)
until convergence. In this case, the CNMF algorithm appears
to be a projected gradient NMF [36], with the projection steps
being (6) and (7), which is mathematically clear and simple to
implement. This approach uses tight constraints on the sensor
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properties. In contrast, when Iin is set as a large value, the
CNMF uses loose constraints for the initialization of the NMF
unmixing to find better local optima. The CNMF algorithm for
hyperspectral and multispectral data fusion is summarized as
follows.

Algorithm: CNMF unmixing for hyperspectral and multi-
spectral data fusion
Input: Hyperspectral data X ∈ R

λh×Lh and multispectral
data Y ∈ R

λm×Lm .
Output: Two matrices W ∈ R

λh×D and H ∈ R
D×Lm .

Step 1. First NMF of X
1a) Initialize W by VCA, and update Hh by (9), with

W fixed.
1b) Optimize W and Hh by (8) and (9).

Step 2. NMF of Y
2a) Initialize Wm by (7), and update H by (11), with

Wm fixed.
2b) Optimize Wm and H by (10) and (11).

Step 3. Subsequent NMF of X
3a) Initialize Hh by (6), and update W by (8), with

Hh fixed.
3b) Optimize W and Hh by (8) and (9).

Step 4. Repeat Steps 2 and 3.

III. DATA AND EVALUATION

A. Test Data

The proposed hyperspectral and multispectral data fusion
technique is applied to three synthetic data sets generated from
real airborne hyperspectral data. The first image was taken
over Indian Pine by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) [37] sensor in 1996, with 224 spectral
bands in the 400–2500-nm region. The second image was also
collected by AVIRIS, taken over Cuprite, NV, in 1997. The third
image was taken over Washington DC by the Hyperspectral
Digital Imagery Collection Experiment (HYDICE) [38] sensor
in 1995, with 191 spectral bands in the 400–2500-nm region.
We selected these various scenes to evaluate the general effec-
tiveness of CNMF for spectral divergence.

We selected 240 × 240 pixel size images for all three test
data and generated the multispectral and low-spatial-resolution
hyperspectral data by downsampling the original hyperspec-
tral data in the spectral and spatial domains, respectively.
The multispectral data were produced with uniform spectral
response functions corresponding to Landsat TM bands 1–5
and 7, which cover the 450–520-, 520–600-, 630–690-, 760–
900-, 1550–1750-, and 2080–2350-nm regions, respectively
[15]. The low-spatial-resolution hyperspectral data were gener-
ated by a Gaussian PSF with full-width at half maximum, cor-
responding to six pixels in the original high-spatial-resolution
hyperspectral image, which results in a sixfold difference in
spatial resolution between two sensors. Therefore, R and S are
given as sparse matrices, with each row vector corresponding
to a uniform spectral response function and with each column
vector representing a Gaussian PSF, respectively. In addition,
Gaussian noise was added to the two data, supposing that the
signal-to-noise ratios (SNRs) of multispectral and hyperspec-

tral sensors are 200 and 300, respectively. The larger spatial-
resolution difference and the smaller SNR make the problem of
data fusion more difficult. We determined the spatial-resolution
difference and SNR of two sensors by considering the specifi-
cation of HISUI [33]. In this simulation, we assume that two
data are obtained under completely identical atmospheric and
illumination conditions and are geometrically coregistered.

B. Performance Evaluation

The performance of hyperspectral and multispectral data
fusion was evaluated by comparing the estimated high-spatial-
resolution hyperspectral data with the original data from two
viewpoints: the spatial reconstruction quality of each spectral
band image and the spectral reconstruction quality of each
spectrum at a single pixel. To evaluate the spatial reconstruction
quality, we adopted the peak SNR (PSNR), which is easily
defined via the mean square error (MSE). The MSE of the ith
spectral band image is defined as

MSEi =
1

N

N∑
k=1

(Z−WH)2i,k (13)

where the index (i, k) indicates the kth pixel in the ith band.
The PSNR of the ith band is defined as

PSNRi = 10 · log10
(

MAX2
i

MSEi

)
(14)

where MAXi is the maximum pixel value in the ith band
image. A larger PSNR value indicates a higher quality spatial
reconstruction. To evaluate the spectral reconstruction quality,
we used the spectral angle in the λ-dimensional space between
the estimated and actual spectra. A smaller angle indicates a
higher quality spectral reconstruction. We refer to this angle as
the spectral angle error (SAE).

C. MAP/SMM Method

The MAP/SMM method is one of the most advanced data
fusion techniques that can improve the spatial resolution of
all hyperspectral band images using high-spatial-resolution
multispectral data. The average spectrum, covariance matrix,
and abundance map of each endmember are estimated by the
SMM. Next, by maximizing the conditional probability density
function of Z given by X and Y, the high-spatial-resolution
hyperspectral data can be calculated. The details of the process
are explained, and the MATLAB code is introduced in [16].
In the SMM and MAP processes, the low-spatial-resolution
hyperspectral data are transformed into the PCs, and the low-
rank PCs are mainly processed, which differs greatly from
the proposed method. We use the first six PCs, which have
a variance of more than 99.9% for an entire data cube for
all test images. Several parameters, such as the number of
endmembers, the allowable number of components for a mixed
class, and the discrete mixture level, are necessary for the
SMM. If the number of endmembers is large, the number of
sample spectra for a certain endmember decreases. This results
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TABLE I
COMPARISON OF AVERAGE PSNR (IN DECIBELS) AND SAE (IN DEGREES) VALUES, AND COMPUTATIONAL COSTS (IN SECONDS)

Fig. 2. Effect of endmember number on CNMF fusion quality for the (a) Indian Pine, (b) Cuprite, and (c) Washington DC data.
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Fig. 3. Comparisons of PSNRs between MAP/SMM and CNMF (left graphs), and typical endmember spectra estimated by CNMF (right graphs) for the
(a) Indian Pine, (b) Cuprite, and (c) Washington DC data.

in a nonsingular endmember covariance matrix, which makes
the SMM process impossible. Therefore, in this paper, we adopt
the SMM with four endmembers and 35 mixture classes that are
experimentally set as proper numbers.

IV. RESULTS AND DISCUSSION

We applied the CNMF to the three test data sets. For each
data set, we first examined the effects of the maximum number
of iterations for inner loops (Iin) and the number of endmem-
bers (D). The CNMF method depends on the initial conditions,
and VCA produces a slightly different result for each trial.
Therefore, we repeated the test ten times for each condition.
Next, we evaluated the spatial and spectral performance char-
acteristics of the fused data obtained by the CNMF in detail,

comparing the CNMF with the MAP/SMM using the best
results of the ten trials for both algorithms.

A. Constraint Strength

First, the effect of the constraint strength for the sensor
properties is examined, setting the number of iterations to two
extreme cases. To use tight constraints, the first approach sets
Iin = 1 and Iout = 1000 without update in the initialization
phase after the first NMF unmixings of the two data. The second
approach empirically sets Iin = 300 and Iout = 5 to use loose
constraints. For the first NMF unmixings of the two data, the
former adopts the same procedure with the latter. For these two
approaches, the thresholds (ε) for the convergence condition
and the number of endmembers (D) are set the same at 0.0001
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Fig. 4. Band images in the (a) 815- and (b) 1650-nm regions of low spatial resolution, original high spatial resolution, MAP/SMM, and CNMF, and the difference
between hybrid and original images from left to right for three data, i.e., (top) Indian Pine, (middle) Cuprite, and (bottom) Washington DC.

and 40, respectively. The CPU used is Intel(R) Core(TM) i7
CPU 2.80 GHz, with a memory capacity of 16 GB.

Table I shows the average PSNR and SAE values, and the
computational cost of the CNMF compared with those of the
MAP/SMM. The PSNR and SAE values are the averages of
all band images and pixels, respectively. The CNMF methods
with two different parameters show similar performance char-
acteristics in both spatial and spectral domains, outperforming
the MAP/SMM but taking a longer time. In particular, in the
former approach, the computational cost is high owing to the
large spatial transform matrix (S ∈ R

Lm×Lh). When applied to
real data, S and R contain errors since it is a challenging issue
to estimate the relationship of two sensor properties. Therefore,
the latter approach, which uses (6) and (7) fewer times, is

practically effective. Hereafter, we adopt the CNMF algorithm
of setting Iin = 300 and Iout = 5 to examine the effect of D,
and we compare its performance in more detail with that of the
MAP/SMM.

B. Number of Endmembers

Fig. 2 shows the changes in PSNR and SAE relative to the
number of endmembers for three data sets. The error bars show
one standard deviation error. As a common tendency, the per-
formance of CNMF improves with an increase in the number of
endmembers and finally saturates. This is reasonable because a
linear combination of more varying endmember spectra enables
a more accurate expression of all pixel spectra in the data until
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the endmember variety becomes sufficient. The optimum D can
be larger than the actual number of pure materials in the scene
because the endmember matrix W contains shade and mixed
material endmember spectra owing to the abundance sum-to-
one constraint. The simulation of the Indian Pine data shows
a convergence at approximately D = 40 in two criteria. In the
case of the Cuprite data, both criteria show a faster convergence,
and the SAE value is small. In contrast, for the Washington DC
data, both criteria converge slowly, and the SAE value is large.
These results indicate that the number of endmembers and
the final performance depend on scene complexity. The larger
the number of endmembers is, the higher is the computational
cost. In this paper, we set D = 40 as a sufficient number that
demonstrates the performance of the CNMF compared with the
MAP/SMM in reducing the computational cost.

C. Spatial Performance

The left graphs in Fig. 3 show the PSNR values for all
hyperspectral wavelength regions, with the multispectral obser-
vation region indicated above the graphs. The right graphs in
Fig. 3 show the typical endmember spectra of all of the data
sets. For all of the data sets, the CNMF shows comparable or
better results than the MAP/SMM in many spectral regions. In
most multispectral wavelength regions, the CNMF outperforms
the MAP/SMM. This proves that the CNMF can accurately
estimate the endmember spectra W and the abundance
fractions H simultaneously. The difference between the two
methods is particularly significant in the short-wave infrared
wavelength regions that correspond to Landsat TM bands 5 and
7, which contribute less to the low-rank PCs transformed from
the low-spatial-resolution hyperspectral data, owing to a rela-
tively low radiance for all of the data sets. The MAP/SMM is
limited in improving the spatial resolution of these wavelength
regions because this method enhances only the low-rank PCs. In
contrast, since the CNMF is processed in the original data space
based on unmixing, it enables the improvement of the spatial
resolution in all spectral regions. In the wavelength regions not
covered by the multispectral data, the PSNR values for the two
methods are relatively low and show no significant difference.
This indicates that resolution enhancement is limited without
high-spatial-resolution information.

The four column images at the left side of Fig. 4(a) and
(b) show the comparisons of band images, respectively, in the
815- and 1650-nm regions between the low-spatial-resolution
hyperspectral image, the original high-spatial-resolution hy-
perspectral image, and the hybrid images estimated by the
MAP/SMM and CNMF. We choose these spectral regions as
representative regions where the difference in PSNR between
the two methods is small and large, respectively. It is difficult
to determine the differences between the original image and
most of the CNMF and MAP/SMM images with the naked eye.
Therefore, we show the radiance difference images between the
original images and two hybrid images in the two columns at
the right side of Fig. 4. For each datum, the difference images
are stretched to the same range. The difference images of the
MAP/SMM seem to be random noise images, and the noise
variance is larger than that of the CNMF. In the MAP/SMM,

Fig. 5. Histograms of SAE with SAE distribution maps for the (a) Indian Pine,
(b) Cuprite, and (c) Washington DC data.

the high-rank PCs of the low-spatial-resolution hyperspectral
data, which can be approximated as the random noises, are
not processed. Therefore, it is not possible to increase their
resolution, and they remain in the fused data and appear in
the difference images. In contrast, the image texture is often
reflected in the difference images of the CNMF. The accuracy
of the estimated endmember spectra affects the reconstruction
error of unmixing at each pixel. Therefore, the estimation errors
of the CNMF fused data depend on the observed materials, and
the image textures appear in the difference images.

D. Spectral Performance

Fig. 5 shows the histograms of SAE [14], [39] and the SAE
distribution maps [39]. In these histograms, the CNMF shows
comparable or lower spectral errors than the MAP/SMM. As
summarized in Table I, while enhancing the spatial resolution
of all of the hyperspectral band images, both methods achieve
an accuracy of approximately one degree, which allows the
accurate identification and classification of an observed area
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[39]. The CNMF causes a small spectral distortion owing to
the unmixing-based algorithm that is clearly different from
pan sharpening algorithms [9], [10]. Since the CNMF en-
ables the increase in the number of endmembers compared
with the MAP/SMM, it can deal with spectrally more varied
scenes.

The SAE distribution maps demonstrate the property differ-
ence between the two fused data. The image textures appear
in the CNMF SAE maps owing to the approximation error of
NMF unmixing that depends on the radiance value, which is
also demonstrated in the spatial performance evaluation. The
MAP/SMM SAE maps relatively show a slightly high value
but are less affected by the radiance information owing to the
probabilistic approach with the Gaussian noise assumption.

V. CONCLUSION

In this paper, we have proposed the CNMF algorithm for
hyperspectral and multispectral data fusion. By alternately ap-
plying NMF unmixing to low-spatial-resolution hyperspectral
and high-spatial-resolution multispectral data, the hyperspectral
endmember and high-spatial-resolution abundance matrices are
obtained. By combining these two matrices, fused data with
both high spatial and spectral resolutions can be obtained. The
sensor observation models that relate the two different data
are used for the initialization of each NMF step. Therefore,
for a practical utility, it is important to determine the sensor
properties, such as the PSF and spectral response function. The
CNMF is physically straightforward and easy to implement
owing to its simple update rules. In addition, it can deal
with spectrally varying scenes by setting a large number of
endmembers. In the simulations with various image data sets,
such as those of vegetation, mineral, and urban with vegetation
and water, the CNMF showed comparable or better results than
the MAP/SMM, which is one of the most advanced existing
algorithms. The high qualities of the CNMF fused data in both
the spatial and spectral domains can contribute to the accurate
identification and classification of materials observed at a high
spatial resolution.
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